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The Guiding Principle behind
 Co-Array Fortran

• What is the smallest change required to make
Fortran 90 an effective parallel language?

• How can this change be expressed so that it
is intuitive and natural for Fortran
programmers?

• How can it be expressed so that existing
compiler technology can implement it easily
and efficiently?
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What’s the Problem with SPMD?

• One processor knows nothing about
another’s memory layout.
– Local variables live on the local heap.
– Addresses, sizes and shapes are different on

different program images.
• How can we exchange data between such

non-aligned variables?
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Co-Array Fortran Extension
• Incorporate the SPMD Model into Fortran 90

– Multiple images of the same program
– Text and data are replicated in each image

• Mark some variables with co-dimensions
– Co-dimensions behave like normal dimensions
– Co-dimensions express a logical problem

decomposition
– One-sided data exchange between co-arrays using a

Fortran-like syntax
• Require the underlying run-time system to map the

logical problem decomposition onto specific
hardware.
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The CAF Execution Model

• The number of images is fixed and each image has its
own index, retrievable at run-time:
                   1 £ num_images()
                   1 £  this_image()  ≤ num_images()

• Each image executes the same program independently
of the others.

• The programmer inserts explicit synchronization and
branching as needed.

• An “object” has the same name in each image.
• Each image works on its own local data.
• An image moves remote data to local data through, and

only through, explicit CAF syntax.
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What is Co-Array Syntax?

• Co-Array syntax is a simple extension to
normal Fortran syntax.
– It uses normal rounded brackets ( ) to point to data

in local memory.
– It uses square brackets [ ] to point to data in

remote memory.
– Syntactic and semantic rules apply separately but

equally to ( ) and [ ].
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Examples of Co-Array Declarations

real :: s[*]
real :: a(n)[*]
complex :: z[*]
integer :: index(n)[*]
real :: b(n)[p, *]
real :: c(n,m)[0:p, -7:q, 11:*]
real, allocatable :: w(:)[:]
type(field) :: maxwell[p,*]
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CAF Memory Model
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One-to-One Execution Model
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Many-to-One Execution Model
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One-to-Many Execution Model
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Many-to-Many Execution Model
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What Do Co-Dimensions Mean?
          real :: x(n)[p,q,*]

• Replicate an array of length n, one on each image.
• Build a map so each image knows how to find the

array on any other image.
• Organize images in a logical (not physical) three

dimensional grid.
• The last co-dimension acts like an assumed size

array:   * fi num_images()/(pxq)
• A specific implementation could choose to represent

memory hierarchy through the co-dimensions.
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Relative Image Indices (1)
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Relative Image Indices (II)
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         this_image() = 15       this_image(x) = (/2,3/)x[0:3,0:*]  
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Relative Image Indices (III)
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Relative Image Indices (IV)
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x[0:1,0:*]     this_image() = 15   this_image(x) =(/0,7/)
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Communication Using CAF Syntax
y(:) = x(:)[p]

myIndex(:) = index(:)
yourIndex(:) = index(:)[you]

x(index(:)) = y[index(:)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.



19
University of Minnesota

Irregular and Changing Data
Structures

z%ptr z%ptr

x
x

z[p]%ptr
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Matrix Multiplication

= x
myP

myQ

myP

myQ

real,dimension(n,n)[p,*] :: a,b,c
(/myP,myQ/) = this_image( c)
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
  do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
                            + a(i,k)[myP, q]*b(k,j)[q,myQ]

  enddo
enddo
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
  do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
  enddo
enddo
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 Matrix Multiplication
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Communication for LU
Decomposition

• Row interchange
– temp(:) = a(k,:)
– a(k,:) = a(j,:) [p,myQ]
– a(j,:) [p,myQ] = temp(:)

• Row “Broadcast”
– L0(i:n,i) = a(i:,n,i) [p,p]   i=1,n

• Row/Column “Broadcast”
– L1 (:,:) = a(:,:) [myP,p]
– U1(:,:) = a(:,:) [p,myQ]
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LU Decomposition
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A Parallel “Class Library” for CAF
• Combine the object-based features of Fortran 90

with co-array syntax to obtain an efficient parallel
numerical class library that scales to large
numbers of processors.

• Encapsulate all the hard stuff in modules using
named objects, constructors,destructors, generic
interfaces, dynamic memory management.

• Based on Vector Maps designed to support
redistribution of data for load balancing, adaptive
mesh refinement, etc.
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Run-time System Support for CAF
• Compiler decodes CAF syntax and determines the processor (thread,

process, node) where the data lives
• Compiler hands this information to a communication protocol

– Global virtual address space:  use load/store instructions
• Higher-order bits in address:  remote = local + shift(p)
• Virtual offset:  remote =local + offset(p)
• Table lookup: remote = remote(p)

– Implement on one BG/L compute node as proof-of-concept?
– Interface to a one-sided communication library

• Armci, Shmem, Lapi, Quadrics elan, Myrinet GM-2, MPI-2, Active
messages

• Dynamic memory management for co-arrays
• Fast barriers
• Cache coherence (invalidate on sync?)
• Optimal logical to physical mapping (simulated annealing?)
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The Co-Array Fortran Standard

• Co-Array Fortran is defined by:
– R.W. Numrich and J.K. Reid, “Co-Array Fortran for

Parallel Programming”, ACM Fortran Forum,
17(2):1-31, 1998

• Additional information on the web:
– www.co-array.org
– www.pmodels.org
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Why Language Extensions?
• Programmer uses a familiar language.
• Syntax gives the programmer control and

flexibility.
• Compiler concentrates on local code

optimization.
• Compiler evolves as the hardware evolves.

– Lowest latency and highest bandwidth allowed by
the hardware

– Data ends up in registers or cache not in memory
– Arbitrary communication patterns
– Communication along multiple channels


